

Multigrid Convergent Principal Curvature Estimators in Digital Geometry

David Coeurjolly¹

Jacques-Olivier Lachaud^{2,3}

Jérémy Levallois^{1,2}

¹ Université de Lyon, CNRS INSA-Lyon, LIRIS, UMR5205, F-69621, France

> ² Université de Savoie, CNRS LAMA, UMR5127, F-73776, France

> ² Université Grenoble-Alpes, CNRS LJK, UMR5224, F-38041, France

JIG 2013

Table of content

1 Introduction

- 2 Previous work 2d and mean curvature estimators in Digital Geometry
- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators
- 5 Conclusion

Plan

1 Introduction

- 2 Previous work 2d and mean curvature estimators in Digital Geometry
- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators
- 5 Conclusion

Context

Differential quantities...

- for shape analysis, shape matching, ...
- for mathematical modeling of deformable objects (DIGITALSNOW project)

How to make an estimator?

- Experimental analysis of approximation errors on shapes with known Euclidean values
- Formal proof of convergence
- Computational cost & timing

Multigrid Convergence Framework

Let us consider a **family** X of smooth and compact subsets of \mathbb{R}^d . We denote **shape** X as $X \in X$, and $D_h(X)$ the **digitization** of X in a d-dimensional grid of resolution h. More precisely, we consider classical Gauss digitization defined as

$$\mathbb{D}_h(X) \stackrel{def}{=} \left(\frac{1}{h} \cdot X\right) \cap \mathbb{Z}^d$$

where $\frac{1}{h} \cdot X$ is the uniform scaling of X by factor $\frac{1}{h}$. Furthermore, the set ∂X denotes the **frontier** of X (i.e. its topological boundary). The *h*-boundary $\partial_h X$ is a d-1-dimensional subset of \mathbb{R}^d , which is close to ∂X .

Multigrid convergence for local geometric quantities

Definition

A local discrete geometric estimator \hat{E} of some geometric quantity E is *multigrid convergent* for the family \mathbb{X} if and only if, for any $X \in \mathbb{X}$, there exists a grid step $h_X > 0$ such that the estimate $\hat{E}(D_h(X), \hat{x}, h)$ is defined for all $\hat{x} \in \partial_h X$ with $0 < h < h_X$, and for any $x \in \partial X$,

 $\forall \hat{x} \in \partial_h X \text{ with } \|\hat{x} - x\|_{\infty} \leq h, |\hat{E}(\mathsf{D}_h(X), \hat{x}, h) - E(X, x)| \leq \tau_{X, x}(h),$

where $\tau_{X,x} : \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+$ has null limit at 0. This function defines the **speed of convergence** of \hat{E} toward E at point x of X. The convergence is **uniform** for X when every $\tau_{X,x}$ is **bounded** from above by a function τ_X independent of $x \in \partial X$ with **null limit at 0**.

Family of curvature estimators

Point clouds

- Fitting a polynomial surface of degree at least 2 => convergence results but nothing with noised data
- Estimate orthogonal space with Voronoi diagram => convergence results but several parameters

Triangulated meshes

- Fitting
- Discrete method
- Integral invariant <= stability results when the kernel and the mesh sampling tend to zero</p>
- => Most of them have no theoritical convergence guarantees even without noise.

Digital data

- Polynomial Fitting
- Binomial convolution

2D/3D Curvature Estimators

2D Experimentally convergent

MDCA estimator [Roussillon, T. and Lachaud, J.O., 2011] Uses the most centered maximal Digital Circular Arc (DCA) to estimate the radius of the osculating circle.

2D Theoretically & Experimentally convergent

BC curvature estimator [Esbelin, H.A. and Malgouyres, R., 2009] convergence speed in $O(h^{\frac{4}{9}})$

3D Theoretically & Experimentally convergent

² Curvature estimation using Polynomial fitting of osculating jets [Cazals, F. and Pouget, M., 2005] convergence speed in $O(\delta^2)$ with δ the density of points.

Main contribution

Digital curvature estimators :

- defined in both 2D and 3D (mean and principal curvatures)
- easy to implement
- multigrid convergence is theoretically proved with an uniform convergence speed in $O(h^{\frac{1}{3}})$
- experimental validation of multigrid convergence

Plan

Introduction

2 Previous work - 2d and mean curvature estimators in Digital Geometry

- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators
- 5 Conclusion

Integration based surface feature

Definition

Given $X \in \mathbb{X}$ and a radius $r \in \mathbb{R}^{+*}$, the volumetric integral $V_r(x)$ at $x \in \partial X$ is given by

$$V_r(x) \stackrel{def}{=} \int_{B_r(x)} \chi(p) dp$$

where $B_r(x)$ is the Euclidean ball (kernel) with radius r and center x and $\chi(p)$ the characteristic function of X. In dimension 2, we simply denote $A_r(x)$ such quantity.

Local estimators $\tilde{\kappa}_r(x)$ and $\tilde{H}_r(x)$

$$\tilde{\kappa}_r(X,x) \stackrel{def}{=} \frac{3\pi}{2r} - \frac{3A_r(x)}{r^3}, \quad \tilde{H}_r(X,x) \stackrel{def}{=} \frac{8}{3r} - \frac{4V_r(x)}{\pi r^4}$$

Then :

$$\tilde{\kappa}_r(X,x) = \kappa(X,x) + O(r), \quad \tilde{H}_r(X,x) = H(X,x) + O(r)$$

D. Coeurjolly, J-O. Lachaud, J. Levallois

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 11 / 35

Proof process 2d & mean 3d curvature

$$A_r(x) \to \widehat{\operatorname{Area}}(\mathbb{D}_h(B_r(x) \cap X), h)$$

Convergence of $\hat{\kappa}_r(\mathbf{D}_h(X), \mathbf{x}, h)$ and $\hat{H}_r(\mathbf{D}_h(X'), \mathbf{x}, h)$

Convergence of $\hat{\kappa}_r(\mathbb{D}_h(X), \hat{x}, h)$ and $\hat{H}_r(\mathbb{D}_h(X'), \hat{x}, h)$

Conclusion 2d & 3d mean curvature

Theorem (Uniform convergence of \hat{H}_r along $\partial_h X$)

Let X' be some convex shape of \mathbb{R}^3 , with at least C^2 -boundary and bounded curvature. Then, $\exists h_0 \in \mathbb{R}^+$, for any $h \leq h_0 \ \forall x \in \partial X', \forall \hat{x} \in \partial_h X', \|\hat{x} - x\|_\infty \leq h$

$$\forall 0 < h < r, \hat{H}_r(\partial_h X', \hat{x}, h) \stackrel{def}{=} \frac{8}{3r} - \frac{4\widehat{\operatorname{Vol}}(B_{r/h}(\hat{x}) \cap \partial_h X', h)}{\pi r^4}$$

Setting $r = \frac{\mathbf{k}'h^{\frac{1}{3}}}{\mathbf{k}}$, we have $|\hat{H}_r(\mathsf{D}_h(X'), \hat{x}, h) - H(X', x)| \leq \frac{\mathbf{K}'h^{\frac{1}{3}}}{\mathbf{k}}$

Plan

Introduction

- 2 Previous work 2d and mean curvature estimators in Digital Geometry
- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators

Principal curvatures with covariance matrix

(p,q,s)-moments

For non negative integers p, q and s, with a non-empty subset Y of \mathbb{R}^3

$$m_{p,q,s}(Y) \stackrel{def}{=} \iiint_Y x^p y^q z^s dxdydz$$

Covariance matrix

For simplicity, $A = B_R(x) \cap X$.

$$\mathbf{J}(\mathbf{A}) = \begin{bmatrix}
m_{2,0,0}(A) & m_{1,1,0}(A) & m_{1,0,1}(A) \\
m_{1,1,0}(A) & m_{0,2,0}(A) & m_{0,1,1}(A) \\
m_{1,0,1}(A) & m_{0,1,1}(A) & m_{0,0,2}(A)
\end{bmatrix} - \frac{1}{m_{0,0,0}(A)} \begin{bmatrix}
m_{1,0,0}(A) \\
m_{0,1,0}(A) \\
m_{0,0,1}(A)
\end{bmatrix} \otimes \begin{bmatrix}
m_{1,0,0}(A) \\
m_{0,1,0}(A) \\
m_{0,0,1}(A)
\end{bmatrix}^{T}$$

 \otimes denotes the usual tensor product in vector spaces.

Principal curvatures with covariance matrix

Lemma [Pottmann2007]

Given a shape $X \in \mathbb{X}$, the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ of J(A), where $A = B_R(x) \cap X$ and $x \in \partial X$, have the following Taylor expansion :

$$\begin{split} \lambda_1 &= \frac{2\pi}{15} R^5 - \frac{\pi}{48} (3\kappa^1(X, x) + \kappa^2(X, x)) R^6 + O(R^7) \\ \lambda_2 &= \frac{2\pi}{15} R^5 - \frac{\pi}{48} (\kappa^1(X, x) + 3\kappa^2(X, x)) R^6 + O(R^7) \\ \lambda_3 &= \frac{19\pi}{480} R^5 - \frac{9\pi}{512} (\kappa^1(X, x) + \kappa^2(X, x)) R^6 + O(R^7) \end{split}$$

where $\kappa^1(X, x)$ and $\kappa^2(X, x)$ denotes the principal curvatures of ∂X at x.

Local estimators $\tilde{\kappa}^1(X, x)$ and $\tilde{\kappa}^2(X, x)$

$$\tilde{\kappa}^1(X, x) = \frac{6}{\pi R^6} (\tilde{\lambda}_2 - 3\tilde{\lambda}_1) + \frac{8}{5R}$$
$$\tilde{\kappa}^2(X, x) = \frac{6}{\pi R^6} (\tilde{\lambda}_1 - 3\tilde{\lambda}_2) + \frac{8}{5R}$$

Proof process

Step 1a - Moment estimation

Digital (p,q,s)-moments

We define the *digital* (p,q,s)-moments $\hat{m}_{p,q,s}(Z,h)$ of a subset Z of \mathbb{Z}^3 at step h as :

$$\hat{m}_{p,q,s}(Z,h) \stackrel{def}{=} h^{3+p+q+s} \sum_{(i,j,k)\in Z} i^p j^q k^s$$

If $Z = D_h(Y)$, Y a non-empty subset of \mathbb{R}^3 , and $\sigma \stackrel{def}{=} p + q + s$ the order of the moment :

$$\hat{m}_{p,q,s}(\mathbb{D}_h(Y),h) = m_{p,q,s}(Y) + O(h^{\mu\sigma}).$$

 $\mu_{\sigma} = 1 \text{ in general convex case}$ $\mu_{\sigma} = \frac{38}{25} - \epsilon \text{ [Krätzel1991]}$ $\mu_{\sigma} = \frac{66}{43} - \epsilon \text{ [Müller1999]}$

D. Coeurjolly, J-O. Lachaud, J. Levallois

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 18 / 35

Step 1b - Moment estimation

$$\begin{aligned} \|\hat{m}_{p,q,s}(\mathbb{D}_h(B_R(x)\cap X),h) - m_{p,q,s}(B_R(x)\cap X)\| &= \mathbf{K}'(\mathbf{r})h^{\mu\sigma} \\ \hat{m}_{p,q,s}(\mathbb{D}_h(B_R(x)\cap X),h) &= R^{3+\sigma}\hat{m}_{p,q,s}\left(\mathbb{D}_{h/R}(B_1(\frac{1}{R}\cdot x)\cap \frac{1}{R}\cdot X),\frac{h}{R}\right) \end{aligned}$$

$$\|\hat{m}_{p,q,s}(\mathbb{D}_h(B_R(x)\cap X),h) - m_{p,q,s}(B_R(x)\cap X)\| = KR^{3+\sigma-\mu_{\sigma}}h^{\mu_{\sigma}}$$

with $\mu_{\sigma} \geq 1$.

Proof hints

Rescale shapes Z to only a unit ball B₁

D. Coeurjolly, J-O. Lachaud, J. Levallois

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 19 / 35

Step 2 - Covariance matrix estimation

$$\hat{m}_{p,q,r}(\mathsf{D}_h(B_R(x)\cap X),h)$$
 + [Pottmann2007]

Convergence of
$$\hat{J}(D_h(Z), \boldsymbol{x}, h)$$

Reminder :

$$\hat{m}_{p,q,s}(Z,h) \stackrel{def}{=} h^{3+p+q+s} M_{p,q,s}(Z)$$

We can define :

Digital covariance matrix estimator $\hat{J}(Z,h)$ of a digital shape Z at point $x \in \mathbb{R}^3$ and step h :

$$\hat{J}(Z,h) \stackrel{def}{=} \left[\begin{array}{ccc} \hat{m}_{2,0,0}(Z,h) & \hat{m}_{1,1,0}(Z,h) & \hat{m}_{1,0,1}(Z,h) \\ \hat{m}_{1,1,0}(Z,h) & \hat{m}_{0,2,0}(Z,h) & \hat{m}_{0,1,1}(Z,h) \\ \hat{m}_{1,0,1}(Z,h) & \hat{m}_{0,1,1}(Z,h) & \hat{m}_{0,0,2}(Z,h) \end{array} \right] \\ - \frac{1}{\hat{m}_{0,0,0}(Z,h)} \left[\begin{array}{c} \hat{m}_{1,0,0}(Z,h) \\ \hat{m}_{0,1,0}(Z,h) \\ \hat{m}_{0,0,1}(Z,h) \end{array} \right] \otimes \left[\begin{array}{c} \hat{m}_{1,0,0}(Z,h) \\ \hat{m}_{0,1,0}(Z,h) \\ \hat{m}_{0,0,1}(Z,h) \end{array} \right] \otimes \left[\begin{array}{c} \hat{m}_{1,0,0}(Z,h) \\ \hat{m}_{0,0,1}(Z,h) \\ \hat{m}_{0,0,1}(Z,h) \end{array} \right]$$

Theorem (Multigrid convergence of digital covariance matrix)

Let $X \in \mathbb{X}$. Then, there exists some constant h_X , such that for any grid step $0 < h < h_X$, for arbitrary $x \in \mathbb{R}^3$, for arbitrary $R \ge h$, we have :

 $\|\hat{J}(\mathbf{D}_{h}(B_{R}(x)\cap X),h) - J(B_{R}(x)\cap X)\| \le O(R^{5-\mu_{0}}h^{\mu_{0}}) + O(R^{5-\mu_{1}}h^{\mu_{1}}) + O(R^{5-\mu_{2}}h^{\mu_{2}})$

The constants hidden in the big O do not depend on the shape size or geometry.

D. Coeurjolly, J-O. Lachaud, J. Levallois

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 20 / 35

Step 3a - Positioning error on moments

For any subset $X \subset \mathbb{R}^3$ and for any vector \mathbf{t} with norm $t \stackrel{def}{=} \|\mathbf{t}\|_2 \leq R$, we have for $0 \leq p + q + s \leq 2$:

$$m_{p,q,s}(B_R(x+\mathbf{t}) \cap X) = m_{p,q,s}(B_R(x) \cap X) + \sum_{i=0}^{p+q+s} O(||x||^i t R^{2+p+q+s-i}).$$

Proof hints

r

- For zeroth order moment, we use the volume of the blue part
- For first order moment, we use the fact that the centered 1,0,0-moment is maximized by the x-positive half-ball of the blue part
- For second order moment, we use the fact that the centered 2,0,0-moment is maximized by the ball

Step 3b - Positioning error on covariance matrix

Theorem (Multigrid convergence of digital covariance matrix with position error)

Let $X \in \mathbb{X}$. Then, there exists some constant h_X , such that for any grid step $0 < h < h_X$, for arbitrary $R \ge h$, for any $x \in \partial X$ and any $\hat{x} \in \partial \mathsf{D}_h(X)$, $\|x - \hat{x}\|_{\infty} \le h$, we have :

$$\begin{split} \|\hat{J}(\mathsf{D}_{h}(A(R,\hat{x})),h) - J(A(R,x))\| &\leq \|\hat{J}(\mathsf{D}_{h}(A(R,\hat{x})),h) - J(A(R,\hat{x}))\| \\ &+ \|J(A(R,\hat{x})) - J(A(R,x))\| \\ &\leq \sum_{i=0}^{2} O(R^{5-\mu_{i}}h^{\mu_{i}}) + O(\|x - \hat{x}\|R^{4}) \end{split}$$

The constants hidden in the big O do not depend on the shape size or geometry.

Step 3c - Convergence of digital principal curvature estimators

Theorem (Lidskii-Weyl inequality) [Stewart1990][Bhatia1997]

If $\lambda_i(B)$ denotes the ordered eigenvalues of some symmetric matrix B and $\lambda_i(B + E)$ the ordered eigenvalues of some symmetric matrix B + E, then $\max_i |\lambda_i(B) - \lambda_i(B + E)| \le ||E||$.

Let Z be a digital shape, x some point of \mathbb{R}^3 and h > 0 a gridstep. For $R \ge h$, we define the *integral* principal curvature estimators $\hat{\kappa}_R^1$ and $\hat{\kappa}_R^2$ of Z at point $y \in \mathbb{R}^3$ and step h as

$$egin{array}{rcl} \hat{\kappa}^1_R(Z,y,h) &=& rac{6}{\pi R^6}(\hat{\lambda}_2 - 3\hat{\lambda}_1) + rac{8}{5R}, \ \hat{\kappa}^2_R(Z,y,h) &=& rac{6}{\pi R^6}(\hat{\lambda}_1 - 3\hat{\lambda}_2) + rac{8}{5R}, \end{array}$$

where $\hat{\lambda}_1$ and $\hat{\lambda}_2$ are the two greatest eigenvalues of $\hat{J}(B_{R/h}(\frac{1}{h}\cdot y)\cap Z,h))$

Step 3c - Convergence of digital principal curvature estimators

Theorem (Uniform convergence of principal curvature estimators $\hat{\kappa}_R^1$ and $\hat{\kappa}_R^2$ along $\partial_h X$)

Let $X \in \mathbb{X}$. For $i \in \{1, 2\}$, recall that $\kappa^i(X, x)$ is the *i*-th principal curvature of X at boundary point x. Then, $\exists h_X \in \mathbb{R}^+$, for any $h \leq h_X$, we have

$$\begin{split} \forall x \in \partial X, \forall \hat{x} \in \partial_h X, \| \hat{x} - x \|_{\infty} \leq h \Rightarrow \\ | \hat{\kappa}_R^i (\mathbb{D}_h(X), \hat{x}, h) - \kappa^i(X, x) | \leq \quad O(R) + O(h/R^2) + \sum_{i=0}^2 O(h^{\mu_i}/R^{1+\mu_i}). \end{split}$$

$$\begin{array}{l} \mu = 1 \\ R = kh^{\alpha} \end{array} \} \Rightarrow \alpha_m = \frac{1}{3} \Rightarrow |\hat{\kappa}^i_R(\mathsf{D}_h(X), \hat{x}, h) - \kappa^i(X, x)| \le Kh^{\frac{1}{3}} \end{array}$$

Plan

Introduction

- 2 Previous work 2d and mean curvature estimators in Digital Geometry
- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators
- 5 Conclusion

Experimentation

Experimental Settings

- Family of Euclidean shapes (implicit, parametric) with *exact* curvature information
- Digitization process at resolution *h*
- Error metrics
 - Worst-case l_{∞} error : maximum of absolute difference value $\max_{\hat{x} \in \partial_h X, x \in \partial X} (|\hat{\kappa}_r(\mathsf{D}_h(X), \hat{x}, h) \kappa(X, x)|)$
 - Quadratic l₂ error

Validation of α parameter

Convolution kernel radius

 $r = kh^{\alpha}$

Validation of α parameter

Convolution kernel radius

 $r=kh^{\alpha}$

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 28 / 35

Comparison

Mean curvature and principal directions

Optimizations with convolution

- Open-source C++ library
- Geometry structures, algorithm & tools for digital data
- http://libdgtal.org

Optimization with displacement masks Complexity : i without optimization : $O((r/h)^d)$ i with optimization : $O((r/h)^{d-1})$

D. Coeurjolly, J-O. Lachaud, J. Levallois

Multigrid Convergent Principal Curvature Estimators in Dig. Geo. 32 / 35

Plan

Introduction

- 2 Previous work 2d and mean curvature estimators in Digital Geometry
- 3 Principal curvatures estimators in Digital Geometry
- 4 Experimental evaluation of digital curvature estimators
- 5 Conclusion

Conclusion & Future work

- Integral Invariant is perfect for digital geometry
- A unique estimator for both 2D and 3D
- Easy to implement
- Fast computation with masks
- Convergent with a least a uniform convergence speed in $O(h^{\frac{1}{3}})$
- Needs a parameter (r for the kernel radius)

Future work

- Scale-Space analysis
- Feature detection

Choice of radius

